First Steps In
Scientific Programming

Patricio F. Ortiz

University of Sheffield, June 19, 2018



Overview

Where to start
The learning curve
Elements of a computer

The “terminal”, CL, UNIX tools

Concepts of programming irrespective of language, code
optimisation

Thinking big and long term

Miscellaneous issues



Where to start: the audience

Young (inexperienced) scientists or science/engineering
students

Limited exposure to programming
Eager to learn (or not)

Pressured to produce ASAP

“Land” in projects, O-input on choices

In their future, they will lead projects involving computers,
programming decisions and acquisition of resources



The learning curve

The environment, how to do things in a computer
What “things” you can do

How to make these things to happen

How to organise information

Forget spreadsheets, this is “the real word”

The available tools, OS, languages, different architectures

What to learn (?77?)



Main computer components

 Not just a magical box, everything below is finite
e Hardware:

1. The processor(s): CPU, GPU

2. The storage components

3. Memory

e Software:

A. Programming languages, compilers, interpreters

B. Special libraries, text editors, apps, paths, ETC.



LY

S

L

014



The terminal

A psychological barrier for millennials. It needs demystifying
Command line (!GUI), but real power if embraced

UNIX: Microsoft @ Linux. Future of the cloud, 10T

Plenty of tools that save you from programming:

Man, Is, head, tail, find, awk, grep, ps, shells, sed, mv, cp, od
Remote work: ssh, scp, sftp, rsync

Versioning: SVN, git

Editing: vim, emacs, nano, textwrangler, ETC. Personal preference

Typesetting: tex and family, open-office, ETC.



Elements of programming

Variables

Objects

Sub-programs / methods (variable scope)
Flow control: conditionals, loops, exception
Demo code, prototypes, production code
Low data-volume v high data-volume

Systematic Code testing



Code optimisation

Code optimisers do exist, but they do not replace good
programming practices and they may introduce undesired
“features”

Consider using look-up tables

Some operations are really “expensive”, avoid them. (pow,
exponentials, trigonometric, polynomials).

Learn about existing libraries, avoid reinventing the wheel

Manage memory well, whatever variable/object created
occupies space. Beware of memory leaks.

Be aware of overheads



Prepare for the long run

Longevity of code

Longevity of data

Use adequate data characterisation/description for sharing
Good practices to share data

If data volume is significant, store in binary. Binary is the
natural way for a computer to store information, human
readable format is not.

Whenever possible, add uncertainty information to your
data. Somebody might want to run a model using your data.



Miscellaneous issues

Things do fail, ergo, learn how to fix (debug) ASAP

Even your computer can fail. Backup, better, user versioning
Learn about “accelerators” (TAB key, use of make, ETC)
Learn to profile your code (memory, exec-time, 10, etc.)

When all else fails, ask for help, but write a clear description of the
problem “It doesn’t work™ is not enough.

Learn how to alter someone else’s code effectively

Plan your programs as if they were projects, learn about flowcharts,
use pseudo coding, try thinking of different scenarios.

Learn to handle time and time dependent situations.



