
First Steps in
Scientific Programming

Patricio F. Ortiz

University of Sheffield, June 19, 2018

Overview
• Where to start

• The learning curve

• Elements of a computer

• The “terminal”, CL, UNIX tools

• Concepts of programming irrespective of language, code
optimisation

• Thinking big and long term

• Miscellaneous issues

Where to start: the audience
• Young (inexperienced) scientists or science/engineering

students

• Limited exposure to programming

• Eager to learn (or not)

• Pressured to produce ASAP

• “Land” in projects, 0-input on choices

• In their future, they will lead projects involving computers,
programming decisions and acquisition of resources

The learning curve
• The environment, how to do things in a computer

• What “things” you can do

• How to make these things to happen

• How to organise information

• Forget spreadsheets, this is “the real word”

• The available tools, OS, languages, different architectures

• What to learn (???)

Main computer components
• Not just a magical box, everything below is finite

• Hardware:

1. The processor(s): CPU, GPU

2. The storage components

3. Memory

• Software:

A. Programming languages, compilers, interpreters

B. Special libraries, text editors, apps, paths, ETC.

The terminal

The terminal
• A psychological barrier for millennials. It needs demystifying

• Command line (!GUI), but real power if embraced

• UNIX: Microsoft Linux. Future of the cloud, IOT

• Plenty of tools that save you from programming:

• Man, ls, head, tail, find, awk, grep, ps, shells, sed, mv, cp, od

• Remote work: ssh, scp, sftp, rsync

• Versioning: SVN, git

• Editing: vim, emacs, nano, textwrangler, ETC. Personal preference

• Typesetting: tex and family, open-office, ETC.

Elements of programming
• Variables

• Objects

• Sub-programs / methods (variable scope)

• Flow control: conditionals, loops, exception

• Demo code, prototypes, production code

• Low data-volume v high data-volume

• Systematic Code testing

Code optimisation
• Code optimisers do exist, but they do not replace good

programming practices and they may introduce undesired
“features”

• Consider using look-up tables

• Some operations are really “expensive”, avoid them. (pow,
exponentials, trigonometric, polynomials).

• Learn about existing libraries, avoid reinventing the wheel

• Manage memory well, whatever variable/object created
occupies space. Beware of memory leaks.

• Be aware of overheads

Prepare for the long run
• Longevity of code

• Longevity of data

• Use adequate data characterisation/description for sharing

• Good practices to share data

• If data volume is significant, store in binary. Binary is the
natural way for a computer to store information, human
readable format is not.

• Whenever possible, add uncertainty information to your
data. Somebody might want to run a model using your data.

Miscellaneous issues
• Things do fail, ergo, learn how to fix (debug) ASAP

• Even your computer can fail. Backup, better, user versioning

• Learn about “accelerators” (TAB key, use of make, ETC)

• Learn to profile your code (memory, exec-time, IO, etc.)

• When all else fails, ask for help, but write a clear description of the
problem “It doesn’t work” is not enough.

• Learn how to alter someone else’s code effectively

• Plan your programs as if they were projects, learn about flowcharts,
use pseudo coding, try thinking of different scenarios.

• Learn to handle time and time dependent situations.

