Neural Network Deployment with DIGITS and TensorRT

Twin Karmakharm
Certified Instructor, NVIDIA Deep Learning Institute
DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

• Developers, data scientists and engineers
• Self-driving cars, healthcare and robotics
• Training, optimizing, and deploying deep neural networks
TOPICS

- Caffe
- NVIDIA’S DIGITS
- Deep Learning Approach
- NVIDIA’S TensorRT
- Lab
 - Lab Details
 - Launching the Lab Environment
- Review / Next Steps
CAFFE
Frameworks
Many Deep Learning Tools
WHAT IS CAFFE?
An open framework for deep learning developed by the Berkeley Vision and Learning Center (BVLC)

- Pure C++/CUDA architecture
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Pre-processing and deployment tools, reference models and examples
- Image data management
- Seamless GPU acceleration
- Large community of contributors to the open-source project

caffe.berkeleyvision.org
http://github.com/BVLC/caffe
CAFFE FEATURES
Deep Learning model definition

Protobuf model format

• Strongly typed format
• Human readable
• Auto-generates and checks Caffe code
• Developed by Google
• Used to define network architecture and training parameters
• No coding required!

name: “conv1”
type: “Convolution”
bottom: “data”
top: “conv1”

convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: “xavier”
 }
}
NVIDIA’S DIGITS
NVIDIA’S DIGITS

Interactive Deep Learning GPU Training System

Process Data

Configure DNN

Monitor Progress

Visualization
NVIDIA’S DIGITS

Accuracy obtained from validation dataset

Loss function (Validation)

Loss function (Training)
DEEP LEARNING APPROACH
Deep Learning Approach

Train:
- Dog
- Cat
- Honey badger

Deploy:
- Dog

Errors:
- Dog
- Cat
- Raccoon

DNN
Deep Learning Approach

Convolutional Neural Network

IMAGES

CLASS PREDICTIONS

CAR

TRUCK

DIGGER

BACKGROUND

13
Deep Learning Approach
Neural network training and inference
NVIDIA’S TENSORRT
TensorRT

• Inference engine for production deployment of deep learning applications

• Allows developers to focus on developing AI powered applications
 • TensorRT ensures optimal inference performance
TensorRT Optimizer

- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Select optimal tensor layout
- Batch size tuning

developer.nvidia.com/tensorrt
TensorRT Optimizer
Vertical Layer Fusion

CBR = Convolution, Bias and ReLU

developer.nvidia.com/tensorrt
TensorRT Optimizer
Horizontal Layer Fusion (Layer Aggregation)

CBR = Convolution, Bias and ReLU

developer.nvidia.com/tensorrt
TensorRT Optimizer

Supported layers

- Convolution: 2D
- Activation: ReLU, tanh and sigmoid
- Pooling: max and average
- ElementWise: sum, product or max of two tensors
- LRN: cross-channel only
- Fully-connected: with or without bias
- SoftMax: cross-channel only
- Deconvolution
TensorRT Optimizer

• **Scalability:**
 • Output/Input Layers can connect with other deep learning framework directly
 • Caffe, Theano, Torch, TensorFlow

• **Reduced Latency:**
 • INT8 or FP16
 • INT8 delivers 3X more throughput compared to FP32
 • INT8 uses 61% less memory compared to FP32
TensorRT Runtime

Two Phases

- **Build**: optimizations on the network configuration and generates an optimized plan for computing the forward pass
- **Deploy**: Forward and output the inference result
TensorRT Runtime

- No need to install and run a deep learning framework on the deployment hardware.

- Plan = runtime (serialized) object
 - Plan will be smaller than the combination of model and weights
 - Ready for immediate use
 - Alternatively, state can be serialized and saved to disk or to an object store for distribution

- Three files needed to deploy a classification neural network:
 - Network architecture file (deploy.prototxt)
 - Trained weights (net.caffemodelf)
 - Label file to provide a name for each output class
LAB DETAILS
Lab Architectures / Datasets

• **GoogleNet**
 - CNN architecture trained for image classification using the [ilsvrc12 Imagenet](http://ilsvrc12Imagenet) dataset
 - 1000 class labels to an entire image based on the dominant object present

• **pedestrian_detectNet**
 - CNN architecture able to assign a global classification to an image and detect multiple objects within the image and draw bounding boxes around them
 - Pre-trained model provided has been trained for the task of pedestrian detection using a large dataset of pedestrians in a variety of indoor and outdoor scenes
Lab Tasks

• GPU Inference Engine (GIE) = TensorRT

• Part 1: Inference using DIGITS
 • Will use existing model in DIGITS to perform inference on a single image

• Part 2: Inference using Pycaffe
 • Programming production-like deployable inference code

• Part 3: NVIDIA TensorRT
 • Will run TensorRT Optimizer to build a plan
 • Deploy the plan using TensorRT Runtime
LAUNCHING THE LAB ENVIRONMENT
NAVIGATING TO QWIKLABS

1. Navigate to: https://nvlabs.qwiklab.com
2. Login or create a new account

Please use the email address used to register for session
ACCESSING LAB ENVIRONMENT

3. Select the event specific In-Session Class in the upper left

4. Click the “Deep Learning Network Deployment” Class from the list
LAUNCHING THE LAB ENVIRONMENT

5. Click on the Select button to launch the lab environment

- After a short wait, lab Connection information will be shown
- Please ask Lab Assistants for help!
6. Click on the Start Lab button
LAUNCHING THE LAB ENVIRONMENT

You should see that the lab environment is “launching” towards the upper-right corner.
CONNECTING TO THE LAB ENVIRONMENT

7. Click on “here” to access your lab environment / Jupyter notebook
CONNECTING TO THE LAB ENVIRONMENT

You should see your “Deep Learning Network Deployment” Jupyter notebook.

Deep Learning Network Deployment

By Jon Barker and Ryan Olson

Introduction

Welcome to NVIDIA's deep learning network deployment lab. This lab will use DIGITS, Caffe and the
Jupyter Notebook Introduction

Interface: Run

Similarly, if you look at the corresponding dataset in DIGITS you can find the Job Directory containing the dataset mean image.

```
In [2]:
# Import required Python libraries
import caffe
import numpy as np
import time
print 'import caffe
import numpy as np
import time'

In [3]:
# Configure Caffe to use the GPU for inference
caffe.set_mode_gpus()

In [1]:
# Set the model job directory from DIGITS here
MODEL_JOB_DIR = '/home/ubuntu/digits/digits/jobs/20160605-143028-2f08'
# Set the data job directory from DIGITS here
DATA_JOB_DIR = '/home/ubuntu/digits/digits/jobs/20160605-135347-80s5'
```
Starting DIGITS

Using DIGITS, anyone can easily get started and interactively train their NVIDIA, located here: https://github.com/NVIDIA/DIGITS. However, DIGIT

Inference using DIGITS

Now click here to open DIGITS in a separate tab. If at any time DIGITS a

The DIGITS server you will see running contains two neural networks lis:

Home

Group Jobs:
No Jobs Running
ACCESSING DIGITS

• Will be prompted to enter a username to access DIGITS
 • Can enter any username
 • Use lower case letters
REVIEW / NEXT STEPS
WHAT’S NEXT

• Use / practice what you learned
• Discuss with peers practical applications of DNN
• Reach out to NVIDIA and the Deep Learning Institute
• Look for local meetups
• Follow people like Andrej Karpathy and Andrew Ng
WHAT’S NEXT

TAKE SURVEY
...for the chance to win an NVIDIA SHIELD TV.
Check your email for a link.

ACCESS ONLINE LABS
Check your email for details to access more DLI training online.

ATTEND WORKSHOP
Visit www.nvidia.com/dli for workshops in your area.

JOIN DEVELOPER PROGRAM
GTC AROUND THE WORLD

GTC CHINA
BEIJING
SEPTEMBER 25 -27, 2017

GTC EUROPE
MUNICH
OCTOBER 10 - 12, 2017

GTC ISRAEL
TEL AVIV
OCTOBER 18, 2017

GTC DC
WASHINGTON, DC
NOVEMBER 1 - 2, 2017

GTC JAPAN
TOKYO
DECEMBER 12 - 13, 2017

GTC 2018
SILICON VALLEY
MARCH 26 - 29, 2018

WWW.GPUTECHCONF.COM
Join the Conversation
#GTC18

CONNECT
Connect with technology experts from NVIDIA and other leading organisations.

LEARN
Gain insight and valuable hands-on training through hundreds of sessions and research posters.

DISCOVER
Discover the latest breakthroughs in fields such as autonomous vehicles, HPC, smart cities, VR, robotics, and more.

INNOVATE
Hear about disruptive innovations as startups and researchers present their work.

USE CODE NVMDIERINGER TO SAVE 25% | REGISTER AT WWW.GPUTECHCONF.EU

Join us at Europe’s premier conference on artificial intelligence.

9-11 October 2018 at the International Congress Centre, Munich.
APPENDIX
Lab Debug

Can’t display Ipython Notebook?

- Chrome/Firefox/Safari recommended. IE will work but not as well
- Websockets are required - you can test at websocketstest.com
 - Look for this result:

 ![WebSockets Result Image]

- Execute cells with ctrl+enter or pressing play button
Lab Debug

Don’t know if cell is running??

You should see In[*] and not In[] or In[<some number>].

Solid grey circle in the top-right of the browser window

If you only see #1 and not #2, then you need to try the following in order:

- Press the stop button on the toolbar. Try again.
- Click Kernel -> Restart. Try again.
- Save the Notebook and refresh the page. Try again.
- End the lab from the qwikLABS page and start a new instance. All work will be lost.
 (Please let me know before you do this)
Lab Debug
Reverse to some checkpoint