University
& 9 Of
aeen Sheffield.

A New Era of Computing at the
Large Hadron Collider

Mark Hodgkinson
University of Sheffield
17 March 2022

Contents

Introduction to High Energy Physics at the Large Hadron Collider
Porting code to GPU and portability layers for GPU.

Machine Learning

Software Training

Conclusions

. y ~ ~
\\
\ Il
.
- P
\ N W
\ !
<
\ 0
/\ !

7’ 'y
== "Sauvemy” Chavannes-des-Bois

Tile calorimeters

:'\ LAr hadronic end-cop and

| \ N, forwerd colonmeters
' '. Pixel detector '\
|

| Toroid magnets \ LAr electromagnetic calerimeters
Muon chambers Sclenocid magnel ' Transiton radiation racker
Semiconductor tracker

Above image used under this license.

 ATLAS one of four main experiments at CERN Large Hadron Collider (LHC)

 LHC collides bunches of protons together - the resulting interactions
produce particles of interest such as the Higgs Boson for further study.

o ATLAS uses a number of different garticle detection techniques.

https://creativecommons.org/licenses/by-sa/2.0/deed.en

Particle Detection

B, =3 Tile barrel Tile extended barrel

- T

...................

]

LAr hadronic pe— W T
end-cap (HEC) —— Ylll[// S i

%
([(

¢ SR f i
[. : _

W

LAr eleciromagnetic
end-cap (EMEC)

7 =
\ \\ ':\\
A\
\\\\ \
\

I

!

1t ’
=
\\
‘\

= \ \ . 1!
£ ¥ i s A (\) !
2 'I 3 \ \ \ / Aode g E\ | \& & ,u
.Im | |] : y » \\qiill
3 b/ \ 4“5““

\ \\\ \'\ a
\ { Barrel semiconductor tracker
Pixel detectors

LAr eleciromagnetic
barrel

Barrel transition radiation tracker
End-cap transition radiation tracker

o End-cap semiconductor tracker

* Basic idea is particles pass through modules and “hit” them - software pattern recognition puts the “hits” together.

 Example of detecting an electron

* Electrically charged particles interact with modules in the Inner Detector (ID), which is immersed in a magnetic
field. Software looks for sets of hits that are consistent with a charged particle trajectory in that magnetic field.

* All particles interact with modules in Calorimeter Detectors. Software looks for patterns of contiguous groups of

Calorimeter Cells (modules) consistent with a particle interacting in that region. Can also detect an electron (or
an electrically neutral photon).

* Such algorithms should run both “online” and “offline”.

ATLAS Software

 Can divide software up into different steps.

* We cannot process most of our data

 Employ a “trigger” system which decides which data to keep and which to discard
(irreversible decision!).

 That which we keep Is processed “offline” later on. The decision involves “online”
software (often is the same c++ as offline, but with a different configuration chosen at
runtime via python configuration system).

* \We also simulate our data with Monte Carlo techniques

 Simulation software is also a big resource user and new technigues can help here, as
well as in our online/offline data processing software.

- 50~ ATLAS Preliminary

2022 Computing Model - CPU

3
(4]
(€))
S |
8 B 'f’
T C _
=, 40 « Conservative R&D . 1
H ILU Mi c - v Aggressive R&D _.,"" |
B Lisce HA0RN LR = - — Sustained budget model 35 1
’ g 30— (+10% +20% capacity/year) v —]
) B y]
LHC) HL-LHC S B ,¢" 1
1 O _ ¢ Sy -
> 20F : vt
LS1 — LS2 13- 14 Tev AN 14 TeV ®) B 1
e —— Diodes Consolidation e e B B
8 TeV splice con59|idntion cryolimit LIU Installation inner triplet HL-LHC (g B]
7TV — b"":;;:,'!r;z:m i Civil Eng. P1-P5 radiation limit installation c B]
4 — \ c 1 O - |
||||||“ < - 1
ATLAS - CMS }w-'l B]
experiment upgrade phase 1 ATLAS - CMS =]
pole o nominal Lumi it F ALICE - iHCb i i e O c v b v b v by by b by by by
e il — 2020 2022 2024 2026 2028 2030 2032 2034 2036
o oo 50 R oo .
HL-LHC TECHNICAL EQUIPMENT: | Year

DESIGN STUDY < PROTOTYPES / CONSTRUCTION INSTALLATION & COMM.”” PHYSICS

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Conservative R&D

HL-LHC CIVIL ENGINEERING: 24%
° Tot: 33.8 MHS06*y

DEFINITION EXCAVATION BUILDINGS

7%
7% Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

8%

 |If we do nothing, CPU consumption needs will become inconsistent with hardware that is available. 8%

1%

e Already introduced CPU level threading for LHC Run 3 at ATLAS (2022-2025).

 After that you can see divergence in top right plot! 8%

« Active program to understand which techniques can solve this - for the most part this can be divided into porting “classical” algorithms from CPU to GPU
and replacing “classical” algorithms with Machine Learning.

e People also looking into porting onto FPGA and even Quantum Computing with Machine Learning.

 LHC community recently published roadmap to HL-LHC software - includes many deliverables for software described in Christos talk (basically what to do
beyond MT on CPU)

0

https://cds.cern.ch/record/2802918

Porting Classical algorithms to GPU

AdePT: Baseline performance Adept: GAHepEM Physics Validation

Simplified sampling calorimeter: 50 layers of [2.3 mm PbWO, + 5.7 mm IAr]
R e s R i .

TestEm3: 50 .Iayer Pb/IAr sampling calorimeter TestEm3: 50 layer Pb/IAr sampling = 390 B i e :
Zero B-field, 10000 10GeV e- calorimeter 2 300 | . " 3
Particles processed on GPU in batches of 26 Bfield: OT or 1T(¥) constant g 250 |

AMD Ryzen 9 3900 (12C/24T), GeForce RTX2070 Super (J. Hanhfeld, SFT R&D Meeting, 20 . é 200 §

April 2021) Comparison between & 150

@ : g X :
AdePT roughly same runtime as Geant4 with 24 Threads geanij (C;C(;ZH Em (CPU 5 “5)2 Fire GIoma(CPU) | i eee E
Caveat: AdePT/G4HepEM did not include “safety” geometric cut (MSC) AZGZH 2/ A :,C’ rggu) i 0 Bt b el (C4HeEm) i
Discussions with Celeritas on common benchmark problems, metrics, . N P () , S 01} y
software/hardware setups (*) couple parts-per-thousand discrepancy § o p-Bwsatoace o e,
: b hi 5 0.1 | 3
VecGeom is significant limiter (similar observations in Celeritas) preser.mt.m layers with hlghgst energy Gl Y PSS S S ST VPN BT B :)
. o/ : deposition, number of particles 1 5 10 15 20 25 30 35 40 45 50
Low device occupancy, as low as 10% in extreme cases Validat o Np— Layer index
Large thread divergence, serialized calls to solids alidation aiso in progrgss using
Virtual : i ’ e, geometry, currently validated number of M.Novak, Geant4 Workshop, Sep 2021
irtual function calls prevent compiler optimizations secondaries J. Hanhfeld, M. Novak, SFT R&D Meeting, 23 March 2021

Design, primarily virtual functions, not optimal for portability to, e.q. SYCL

e Studies of common simulation problem found blockers in some particular libraries (left)

* |Independent efforts (Adept and Celeritas) able to verify they see the same issues.

* |mportant to verify physics output matches existing output, already pretty close with current setup.

* Further details in B. Morgans talk (U. Warwick) at UK SWIFT-HEP Workshop, November 2021.

v

https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas
https://indico.cern.ch/event/1033028/contributions/4551822/subcontributions/353096/attachments/2338497/3986350/SwiftHEPSimulation031121.pdf

Porting Classical algorithms to GPU

__global__ void initialize_kn(ParamPointers const params, using namespace alpaka:

StatePointers const states,

s 2 . s o //Define shortcuts - some alpaka 1tems we will use
InitialPointers const 1n1t) //Define shortcuts for some alpaka 1tems we use
using Dim = dim::DimInt<l>;

{ using Idx = uint32_t;
// Grid-stride loop, see //Define the alpaka accelerator to be Nvidia GPU
for (int tid = blockIdx.x * blockDim.x + threadIdx.x; using Acc = acc::AccGpuCudaRt<Dim, Idx>;

tid < static cast<int>(states.size()); struct initialize alpakad

tid += blockDim.x * qridDim.x) template <typename Acc>
{ ALPAKA_FN_ACC void operator()(Acc const &acc,ParamPointers const params,StatePointers const states,InitialPointers const init) «
for(int tid = idx::getIdx<Grid, Threads>(acc)[0];tid < static_cast<int>(states.size());tid += blockDim.x * gridDim.x){
ParticleTrackView particle(params.particle, states.particle, ThreadId(tid));
params.particle, states.particle, ThreadId(tid)); particle = init.particle;

ParticleTrackView particle(

particle = init.particle;
// Particles begin alive and 1in the +z direction

states.direction([tid] = {0, @, 1};
'/ Particles begin alive and in the +z direction states.position[tid] = {0, @, 0};
states.direction([tid] = {@, 0, 1}; states.time[tid] = 0;
states.position[tid] = {0, @, 0}; } states.alive[tid] = true;
states.time[tid] = 0;
states.alive[tid] = true; }
} b

* People have been asking the question - what if we need to use GPU not made by NVIDIA?
e Portability may be the answer - many choices exist such as Alpaka, Intel OneAPI etc

« At Sheffield | studied Alpaka, using simulation code in the Celeritas project, thanks to funding from the Excalibur program.

e As you can see above Alpaka code is more verbose than CUDA code, though the concepts are the same (copy data to/from devices, run
kernels etc).

 Ran tests on VM in STFC cloud. Installation of needed packages was done in a docker container.
8

https://github.com/alpaka-group/alpaka
https://github.com/celeritas-project/celeritas

Porting Classical algorithms to GPU

Setup Call Time
_____________________________________ 1 | iterate kn ~ 379+0.04ms
_____________________________________ 1 1. intialize kn ' 454 +019 us .
_____________________________________ 1 1. . cudaMalloc '@ 277.41 +6.51s
2 . terate kn ~ 77.80+441ms
2l nitialize_ kn 47,46 +0.29 us. .
2 cudaMalloc 761.13 + 302.91 us.
I I iterate_alpaka = 92.35+5.91ms
I . initialize_alpaka = 261.98 +2.02 us .

3 cudaMalloc ~ 805.38 + 348.72 us

* Three setups were tested:

1 - Nominal Celeritas, 2 - Nominal Celeritas + memory copying migrated to Alpaka and 3 - Nominal Celeritas + memory copying migrated to
Alpaka + kernel execution migrated to Alpaka

e Uncertainty defined as fastest minus slowest of 5 runs

» Clearly there is an overhead when using Alpaka - not being a GPU expert | could not explain exactly why, but naively (to me) adding more layers of
code might cause such an issue:

* Representative of CMS collaboration (similar experiment to ATLAS on the LHC) confirmed in a more realistic example they have setup sees a
factor of 2 or so slowdown w.r.t native cuda when using Alpaka (such differences are problem specific).

* Real question may not be how much one slows down, but whether one gains enough over CPU only options and over CPU + GPU NVIDIA only
options (given one then gets access to other vendor GPU resources). g

Porting Classical algorithms to GPU

HEP-CCE

Patatrack : Results FastCaloSim : Results HEP-CCE
e \ersions: Kokkos i
o Direct: CPU, CUDA, HIP e exercised all backends: CUDA, HIP, Intel, pThread, OpenMP
o Kokkos: CPU (Serial, POSIX Threads), CUDA, HIP e Kokkos/CUDA performs similarly to pure CUDA
o Alpaka: CPU (Serial, TBB), CUDA o 5x faster event loop for 65GeV electrons :
= Developed by CERN group, first results shown in ACAT21 poster - o ADxfasterfor4TeV electrons . . I J = J 0
e Snapshot of performance comparison of direct vs Kokkos versions on Cori ¢ Increased penalties from launch latencies and memory Init S
e hip/AMD considerably slower than CUDA
GPU o Kokkos/HIP performs similarly to HIP o
o Intel Xeon Gold 6148 (Skylake, 20 cores, 2 threads/core) + NVIDIA V100 e Kokkos/OMP has 2.5x perf of original CPU at 12 threads po| MEEC TSR e Ee
Running 1-thread Direct CPU Kokkos Serial 1 process Direct CUDA Kokkos CUDA SYCL j
processes e Ten runs’ of single-electron and top quark pair production ;
1 process (node free) 25.2+04 events/s 23.9 + 0.4 events/s i concument eveat | G91£5 evontas | 962 X & events/s SLmuA?\}B)%%U host backend (TBB, on OpenCL)
o Intel CPU with OpenCL backend ' :
40 processes (full socket) 460 + 10 events/s 260 + 10 events/s 3 concurrent events | 1725+ 4 events/s | 996 + 4 events/s ¢ ’é‘:';;(ljaosf}ﬁ)ratg an CPU for single electrons when executed using : ey = - 1
7 concurrent events | 2202 + 9 events/s | 985 + 1 events/s e Top quark simulations achieve no gains on GPU due to lack of £
inter event parallelism and run-time loading of parametrizations on 3|
: : - host (more secondaries &l
o Showed also in VCHEP21 that the throughput with CUDA Unified Memory ‘) : I I I
was about 3x smaller than with explicit memory management Same source runs on 4 different platform —— -
U.S. DEPARTMENT OF : M . = ~ e L Office of ~ BFUUkhaven e - A
. ENERGY oo Argonneb () Brookhaven 2% Fermilab B BERKELEY LAB 17 6 ENERGY science Afgormeo L vy 3¢ Fermilab [l BerKeLEY LAB

« Taken from C. Leggets (Lawrence Berkeley National Lab) talk at CERN Compute Accelerator Forum (HCAF), Feb 2022.
* Performance depends on the task.
* |n general can see some performance penalties when using portabillity layers.

e Pattern recognition problem in data processing (left) and simulation problems (right).

10

https://indico.cern.ch/event/1073639/contributions/4515383/attachments/2387708/4084349/HEP-CCE%20HSF%20Feb%209%202022-1.pdf
https://indico.cern.ch/category/12741/

Machine Learning

 HEP has long used machine learning, though recently has it become far
more prevalent.

 Even 20 years ago people looked into used neural nets (via CERN
ROOT TMVA software), though often disfavoured because people did
not like “black boxes” (this was my experience during my PhD).

 Boosted Decision Trees were very popular for binary classification tasks
in the 2010’s.

 Nowadays many people using keras etc to train deep neural nets etc.

11

Particle Flow

44m
o
H [} ' H 'f
oL : R
: ‘\ ‘ : 1 ' ‘\ " l' '
l‘ C “‘ ~~.--"' ’ “ “‘ “\ ‘~.--"' I" " . ! ' 'n
. LY £ J
h2S » AS ," ; ’ ‘ A | /
. .y e - 4 . N ~“~. -’ y 4 | 0 !)
2 - Y3 'n
“ “Qy O" 4 “ “5§ "' e ')
e L o* Sean ‘,o' | n ¥ v P !
’ LT L P ‘ - A
~§~~ | - "’ ‘~~~ = 'O' o X 'Il.
s g s -) 3 , y
N.... --“d §.... --“ﬂ) “l
- - - ' L !
I pro— 25m 4 / | T
- - -~ - 5
"‘oo .~~~~ "’¢¢ -~.~‘ .l' b,"‘ R (| f
o" R /' K |
'o' ‘\ '0' \\ '| ll -". ’ 'f
’ - . ’ - b} i Ve
" " - . . \“ " -~ - ~ ~~~‘ \“ | |) : % N
. . * \ J d
." v “. [," 7 + ‘\ H | £y \ Tile calorimeters
[] ' @ [1] '’ ﬁT 1 1 | X PN)
1 ' H 1 ' H | ERNY .
1 1 / :
' X ! . !] ! : | ; / ' LAr hadronic end-cop and
Y) 7 7 ' \ J H | ‘ / . \ W, forword colonmeters
[' ,
.\ \ ’ J ' RS S s \ A | Pixel detector \
‘\ -------- " ‘\ ~~.~---"' l' Nmapeare e ". . : "I | X
. ',‘ X ',' l Toroid magnetfs | l | LAr electromagnetic calerimeters
b . » / |
- ’ (Y ’
. o E M B 3 ~,\~ ".x E M B 3 Muon chombers Sclencid magnet | Transiion radiation racker
S= - - - [pep— -
- - - - Semiconductor tracker

1 2 3 N

* In ATLAS Technical Design Report (1999) it was envisaged jets would be measured only using the calorimeters.

« Particle Flow improves this measurement by matching the Inner Detector (ID) and Calorimeter measurements of charged particles -
precision on ID measurement is better and ID allows to match charged particle measurements with a specific collision within the proton
bunch and hence can reject charged particles from the “wrong” collision - typically ATLAS sees one interesting collision (*hard scatter”
which might e.g produce a Higgs Boson) and many other collisions (“pileup”) at the same time.

* Particle Flow uses knowledge of how charged pions interact in the calorimeters (e.g shape and symmetry of energy deposits) to swap the
measurement for the ID measurement.

 When Calorimeter is unfolded in angular coordinates this looks like a 2D image with pixels.

12

https://cds.cern.ch/record/391176?ln=en

EMB1

Flatten

Dense 512

Dense 256

Dense 128

DNN Classifier

EMB2 EMB3 Tile1 Tile2

Flatten Flatten Flatten Flatten
Dense 256 Dense 128

Dense 128 Dense 64 Dense 8 Dense 8

Dense 64 Dense 32 Dense 4 Dense 4

Tile3

Flatten

Dense 4

Dense 2

Concatenate

Dense 100

Machine Learning

ATL-PHYS-PUB-2020-018

CNN Classifier

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Dense 128

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Flatten

Dense 128

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Flatten

Dense 128

Densenet

EMB2
EMB3

(rebinned to EMB2)

Tile1

Tile2

Tile3

(rebinned to
Tile1)

Flatten Flatten Flatten

Dense 128 Dense 128 Dense 128

Concatenate

Dense 64

Dense 64

« (Calibration - correct energy measurements in calorimeter for things we cannot measure (neutrino particles do not interact, interactions in “dead material” where
we run cabling to read out calorimeter modules, etc).

e Deep Neutral Network (DNN), Convolutional Neural Network (CNN) and Densely Connected Convolution Network (DenseNet) have been studied.
e Currently ATLAS LCW Calibration scheme uses a Likelihood:
« Classification step using Likelihood ratio, making use of the cluster energy, eta position, longitudinal depth and average cell energy density.
« Calibration step deploys calorimeter cell signal weighting which depend on cluster energy and location.

 The Machine Learning schemes also do both classification and regression.
13

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/

Response Median

M aCh | ne Lear‘n | ng ATL-PHYS-PUB-2020-018

1.30 T — ————— (= I ' - S]
EM _%5 0.7F EM]
| o5l — = LCW] o [== LCW :
| CNN Class. + DNN Reg. E 0.6F CNN Class. + DNN Reg.
1.20f] = I | . L
; ATLAS Simulation Preliminary - T 93} ATLAS Simulation Preliminary -
| 15l Mix '~ and =0, All Clusters g [Mix n*~ and ¥, All Clusters
: : 2
110‘ G] 8- I
: o : g 031)
I] O i
1.05F Y il 0 _
i TS~] 0.2F]
100 m e | —
I] 01 .
095 | -
100 101 102 108 S Y S O S
0.0 100 10 102

108

True Energy [GeV] True Energy [GeV]

« Combined classification and regression test:
 Compare LCW to combination of CNN Classifier (best) and DNN regression (best)
« High performance of CNN classifier ensures that the correct energy regression is applied in this mixed particle sample.
« Good performance means a value of 1 in the left plot and the lowest possible value in the right plot.
* Response is ratio of measured energy to the known true energy deposit in a simulation (ideally exactly 1).
e Resolution is a measure of the precision of this measurement (ideally zero - i.e we always measure a value of 1).
« Currently we (Sheffield) are working with Lancaster to add these techniques into the particle flow algorithm we developed, which ATLAS currently uses.
* Funded through STFC IRIS. Unfortunately ATLAS has not yet produced public results, so can’t show any details.

* Other architecture such as Graph Neural Network (GN) under study. "

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/

Quantum Computing with Machine Learning

7’ 7’
0.2 1 ,»° —— DNN(AUC =0.754) 0.2 1 ’ —— DNN(AUC =0.770)
’ — Angle Emb. (AUC = 0.748) — Angle Emb. (AUC = 0.744)

Amplitude Emb. (AUC = 0.705) Amplitude Emb. (AUC = 0.723)

0.0 ? T T 0.0 T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
mistag mistag

() (b)

Figure 5: ROC distributions and AUC score for DNN (green), Angle Embedding (blue) and
Amplitude Embedding circuits (yellow) for the muon dataset (a) and the complete dataset (b).
The dashed line represents a random classifier.

- Standard DNN (green) comparable with QML (blue)
* Proof that in principle you can get the same performance as DNN
- Presumably then the question is what you gain from QML over ML

on GPU?

* The paper emphasises fewer training events were needed on the

QML to get the same performance.

Let’s start with a simple example circuit that generates a two-qubit entangled state, then evaluates the expectation value of
the Pauli-Z operator on the first wire.

@gml.gnode(dev, interface="7jax")
def circuit(param):

gml.RX(param, wires=0)
qml.CNOT (wires=[0, 1])

return gml.expval(gml.PauliZ(0))

Doubtful (my opinion) this is something we will be using in 10 years, but | include it given a few groups

have started to study usage.

* e.g this preprint uses LHCB (another large scale LHC experiment) data to compare existing NN with
NN on simulated quantum computers for a task called “b-tagging” - essentially a binary classification
task. Is a measurement of a quark traversing the detector of one type (b) or another (light)?

* They used pennylane to simulated quantum circuits and google jax to do the ML with that quantum
circuit. Looking at the pennylane tutorials it appears straightforward to use.

« Standard DNN uses keras.

15

https://arxiv.org/pdf/2202.13943.pdf
https://pennylane.ai
https://github.com/google/jax#neural-network-libraries

University Training

#In the python case we have to explicitly ask to import the classes (TH1F, TCanvas) that we will use.

#We did not have to do anything equivalent in the C++ example above, executed in CLING c++ - CLING C++ 1s aware
#of the ROOT libraries by default, python is not aware by default (hence the need for import statements).

from ROOT import TH1F, TCanvas

histPython = TH1F("hPython","My First Histogram;x {@}; frequency",100,10,10)
histPython.FillRandom("gaus",2000);

canPython = TCanvas()

histPython.Draw()

canPython.Draw()

Info in <TH1F::FillRandom>: Using function axis and range [-1,1]

My First Histogram

hPython
>)
2 n ~ Entries 2000 miniTreeTTbar = uproot.open("http://opendata.atlas.cern/release/samples/MC/mc_117049.ttbar_had.root") ["mini"]
g_ 35— Mean 0.0124 df_ttbar = miniTreeTTbar.arrays(["alljet_n","jet_pt"],library='pd',entry_stop=1000)
@ — Std Dev 0.547 df_ttbar.hist("jet_pt",bins=100, range=[0,200000])
- - df_ttbar.hist("alljet_n",bins=10)
30—
— J 1 array([[<AxesSubplot:title={'center':'alljet_n'}>]], dtype=object)
25— jet_pt
20— l
n i QJ_ 200 -
15— h.L
u | - i 150 A
10:_ 100 - ll.
5:_ .‘ 50 J I.Hl- n
O_I I 1 1 | 1 I 1 1 1 1 I 1 | 1 1 I 1 1 1 1 l |
-1 -0.5 0 0.5 1 0-
X{O} 0 25000 50000 75000 100000125000150000175000 200000

 HEP has a lot of training resources available.
* The first one most people (as PhD students) would encounter are lectures/tutorials from their own university HEP groups.

« At Sheffield for example we use Jupyter notebooks (available in GitHub) that | wrote to illustrate how to use ROOT (CERN software for making histograms
from HEP specific ROOT file format), standard python tools (such as pandas, numpy) and to get started in ML (with python keras).

 Run them in my mybinder.org (ok for lightweight tasks to learn technical details of how to do things - e.g to learn usage of NN have to massively restrict
amount of data to train on if you want reasonable turnaround).

 Make use of ATLAS open data to teach.

16

https://github.com/shefmarkh/ROOTSheffieldTeachingMaterial2020
http://mybinder.org
http://opendata.atlas.cern

Overview
Timetable
Registration
Participant List
Videoconference
Past training events

Group Photo Zoom

B hst carpentry-organisers

* ATLAS also maintains public documentation on many typical tasks ATLAS git workflow (right).

HSF Training

We are very excited to announce the Software Carpentry Workshop organised through the HEP Software
Foundation and IRIS-HEP

The times for the workshop are in Central European time zone.

Over three days we will cover the fundamentals of:

Unix (e.qg. shell, bash and scripting);

Git and Github — how to version control your code

Python - fundamentals of using the Python language

Jupyter Notebooks

Python for analysis — how to combine Python with ROOT to start analysing data (i.e. PyROOT)

This training is aimed at those who are new to HEP and want a fast-track to competency with software
fundamentals, as well the non-expert self-taught who wish to ensure they do not have gaps in their
knowledge.

The first two days are covered by The Carpentries. The third day will be taught by tutors expert in HEP
software. Interactive hands-on sessions lead by the tutor will be supported by a number of helpers to
ensure all participants are able to follow and understand the material.

Given the limited number of participants, all participants are expected to attend the whole workshop.

This is a virtual event and no payment or travel is required for attending. Participants are required to have
their own laptop for the workshop.

Please contact the organizers (email us) in case of any questions.

ATLAS Software Documentation Guides ~

Tutorial Home &

Basics
Help With Git
Detailed Tutorial

Set Up

Fork the Repository

Clone Repository Locally

Develop Code
Make a Merge Request

Resolving Conflicts
Code Review

Continuous Integration

Review a request
Reference

Workflow Quick Reference
Git-ATLAS

Remote login
Misc

Migration from SVN
Git tips

Merge Packages Between
Branches

Feedback @

HEP Software Foundation (HSF) provides general training material (left) for people to use.

On ATLAS they get a week of tutorials about how our C++ software works, how to use git etc.

Also make use of Sheffield RSE courses (e.g | have attended their Nvidia ML course some years ago).

17

Tutorials ~ Links ~

Clone Repository Locally

Last update: 14 Dec 2021 [History] [Edit]

You now have a GitLab fork of your own, but this is used primarily for sharing your changes with others. But to make a
change you need a local copy that you can edit yourself. In git this is done by cloning your fork.

Here there are two ways to proceed

« a full checkout gives you access to working copies of all files. It's great if you want to look at many files or
substantial parts of the repository (it's very much the standard way that things would normally go in git, but you
do need to setup more by hand).

* a sparse checkout gives you only the parts of the repository you want to update. It's great if you know you only
want to make a limited set of changes and want to limit the space used by your working copy (it's less standard,
but git can do it and we provide the git atlas wrapper to make it easier).

Do not follow both sets of instructions - pick just one.

Full Checkout

The standard git clone command will take a copy of the repository and checkout a working copy for you:

cd /tmp/SUSER # you might need this, read the note below

git clone https://:@gitlab.cern.ch:8443/[YOUR USER NAME]/athena.git
ie.,

$ git clone https://:@gitlab.cern.ch:8443/graemes/athena.git

Cloning into ‘'athena'...

remote: Counting objects: 232197, done.

remote: Compressing objects: 100% (99543/99543), done.

remote: Total 232197 (delta 125192), reused 231903 (delta 125033)
Receiving objects: 100% (232197/232197), 160.35 MiB | 37.61 MiB/s, done.
Resolving deltas: 100% (125192/125192), done.

Checking connectivity... done.

Checking out files: 100% (68190/68190), done.

Students also attend annual Rutherford Appleton Laboratory lectures on computing technologies and ML (started a few years ago).

CERN Openlab provides general training from third parties, e.g this upcoming tutorial on usage of Intel Software Tools.

https://indico.stfc.ac.uk/event/461/
https://indico.cern.ch/event/1106734/

Conclusions

We saw an overview of the software challenges for the future HL-LHC

Many R&D studies underway to port algorithms to GPU (and FPGA) and
study usage of portability layers.

Machine Learning already extensively used in HEP, potentially many more
gains to be had in HL-LHC by moving more and more classical algorithms
to ML based approaches.

* People even thinking very long term and starting to study ML on
qguantum computers.

Extensive training provided within the HEP community.

18

Extras

Quantum Circuits

Quantum Computing: Key Concepts A. Elbe (Intel)
Superposition Entanglement
Classical Physics Quantum Physics . N/ /\ /\)@ -‘
£ G
Heads or Tails Heads and Tails N Quantum Bits or Qublts = 2N States
+ 50 Entangled Qubits = more states than Fragility

e —

any possible supercomputer

« 300 Entangled Qubits = more states
than atoms in the universe

causes loss of
e . .
ol ~¢ information

- Observation or
noise

« Fragility will require error correction and
likely millions of qubits

Copyright © 2018 Intel Corporation. All rights reserved

* Build circuits from qubits, create quantum logic gates - some qubits reserved for error correction - how many depends on
the hardware

* Many commercial systems (using different technologies) - IBM, Intel, Google, Microsoft etc

* D-Wave has some nice explanations of how Quantum Computing (a particular type called annealing) works.

e (Classical algorithms may search for lowest valley in a minimisation problem, but might not reach the global minimum.

 Quantum annealing allows to occupy many coordinates simultaneously, to quantum tunnel between valleys and to
use quantum entanglement to see correlations that lead to the deepest valley.

20

https://www.dwavesys.com/learn/quantum-computing/

CCE/PPS: Software Support Chart

HEP-CCE

OpenMP dpc++
Offload Kokkos / SYCL HIP CUDA Alpaka
GPU
AMD GPU
Intel GPU 3rd Part
Fortran
FPG A pos;ﬁ)é{]
time to add
. . . . |
Platform support still a moving target: this chart is updated often! python!
| = _ : x
0 Sclenca Argonne & (&) Brockhaven 32 Fermilab Bl eerxeLey Las

 Taken from C. Leggets talk at CERN HCAF, Feb 2022.

21

https://indico.cern.ch/event/1073639/contributions/4515383/attachments/2387708/4084349/HEP-CCE%20HSF%20Feb%209%202022-1.pdf

