Profiling GPU-driven machine learning code

Why is my machine learning code slow?

Edwin Brown 05/07/2024
Flame Graph

Function: mysql' filesort (108,672 samples, 31.19%)
Profiling - What is it?

Profiling is a way of analysing how code is running.

Statistical data is collected by a profiler when running code.

Data can include what processes were run, how long they took, and memory usage.
Profiling - Why is it important?

Accessible—allows code to use fewer resources (less $$)

Sustainable—reduce energy consumption (and CO2 emissions)

Scalable—efficiently utilise supercomputer resources

In particular, Machine Learning algorithms often rely on the use of GPUs which are particularly in demand and power hungry.
my_schedule = schedule(skip_first=5, wait=2, warmup=2, active=5)
my_schedule = schedule(skip_first=5, wait=2, warmup=2, active=5)

profiler = torch.profiler.profile(schedule=my_schedule, on_trace_ready=torch.profiler.tensorboard_trace_handler('logs/test1'))
my_schedule = schedule(skip_first=5, wait=2, warmup=2, active=5)

profiler = torch.profiler.profile(
 schedule=my_schedule,
 on_trace_ready=torch.profiler.tensorboard_trace_handler('logs/test1'))

profiler.start()
for data in train_loader:
 train_step(data)
 profiler.step()
profiler.stop()
Profiling - How do I view the logs?

Perfetto - Browser based trace viewer

Tensorboard - Application for viewing training and profiling statistics developed by TensorFlow.

Holistic Trace Analysis - Open source library for interpreting logs output from pytorch profiler.
Experiment

- Train a computer vision model (Simple Unet model) to perform segmentation on 64,000 images (32,000 image and mask respectively) in Pytorch.

- Images are stored as .png files on disk. Image pipeline loads these images and masks from disk and does some pre-processing (rotation, resizing, etc.).

- Can we use Profiling to find and remove bottlenecks to speed up our training?
Hardware

Virtual Machine

Intel i7-5930K, 6 cores, 12 threads

64GB Memory

GPUs:

- Geforce RTX 3090 (CUDA Device 0)
- Geforce RTX 3090 (CUDA Device 1)
train_loader = DataLoader(train_dataset, batch_size=256)

for data in train_loader:
 inputs, masks = data[0].to('cuda'), data[1].to('cuda')

 outputs = model(inputs)
 loss = criterion(outputs, masks)

 loss.backward()
 optimizer.step()
Sequential Pipeline

https://www.tensorflow.org/guide/data_performance
Prefetching

https://www.tensorflow.org/guide/data_performance
test_2 - multiprocessing dataloader

```
train_loader = DataLoader(train_dataset, batch_size=256, 
                          num_workers=4)

for data in train_loader:
    inputs, masks = data[0].to('cuda'), data[1].to('cuda')

    outputs = model(inputs)
    loss = criterion(outputs, masks)

    loss.backward()
    optimizer.step()
```
```python
test 3 - automatic mixed precision

train_loader = DataLoader(train_dataset, batch_size=256,
                          num_workers=4)

for data in train_loader:
    inputs, masks = data[0].to('cuda'), data[1].to('cuda')
    with autocast():
        outputs = model(inputs)
        loss = criterion(outputs, masks)

        loss.backward()
        optimizer.step()
```
Test 4 - Distributed Data-Parallel

- GPU 1: Forward Pass, Backward Pass, Compute Gradients ∂x_1
- GPU 2: Forward Pass, Backward Pass, Compute Gradients ∂x_2
- GPU 3: Forward Pass, Backward Pass, Compute Gradients ∂x_3

Mini-batch

Updated Model

Average Gradients ∂x
- Update Weights
 $w_{new} = w - a \partial x$

Parameter Server
Test Comparison

- Multi-Processed DataLoader
- + Mixed Precision
- + DDP

- Test 1
- Test 2
- Test 3
- Test 4

Time taken to run an epoch for each test

Epoch Run Time (s)

0 25 50 75 100 125 150 175 200

32.26
41.75
68.38
158.2
Other test ideas

- Is there a better way of storing the data on disk other than big lists of PNGs?

- Torch compile

- Passing more of the CPU workload to the GPU?

- Performance Tuning Guide — PyTorch Tutorials 2.3.0+cu121 documentation
Conclusions

Profiling can help find bottlenecks in machine learning workflows

After bottlenecks have been identified, then simple changes can be made to speed up training

Repository here
Contact

Email: w.e.brown@sheffield.ac.uk

Sheffield RSE Team

Alan Turing Institute REG Group