Going with the flow

DR. IAN SUDBERY MOLECULAR BIOLOGY AND BIOTECHNOLOGY I.SUDBERY@SHEFFIELD.AC.UK @lanSudbery www.github.com/sudlab Using workflow managers to co-ordinate multistep analysis pipelines across multiple compute nodes in a reproducible manner.

Traditional HPC jobs are single monolithic programs using multi-node parallelism

Today many researchers use notebooks on clusters to do interactive/interpretive analysis of datasets

Research computing spectrum

Single, large, long running, multimode jobs Single core, quick running, interpretive analysis

e.g. a climate model

Regression analysis of a (quite) big dataset

Carrying out multi-step analyses by hand

results = code(data)

- Typing at a terminal is BAD NEWS for reproducibility
- Notebooks (for low intensity work)
- Containers
- Neither very easily work with multi-node parallelism

1.Easy/Automatic

2.Reproducible

3.Generalizable/Scalable

Workflow manager

- Specify dependencies between tasks
- Check if which dependencies need updating
- Only run tasks that need updating
- Do all this unsupervised.

Modern workflow managers

- Either DSLs, configuration based or library
- Allow more complex forms of dependency
- Automatically submit each job to the cluster
- Monitor for successful completion and automatically submit next job
- Parameterizable
- Extensive logging

Modern Workflow managers

May also provide:

- conda/singularity/docker integration
- Use cloud compute and/or storage as well as local cluster
- Allow (distributed) execution of arbitrary code as well as shell scripts
- Helper functions for common analysis tasks

Some modern WFM

Flexibility, customisation

Scalability, portability, performance

	CIGIAIT	SNAKEMAKE	nextflow
Language	Python	DSL	DSL
Dependency Paradigm	Explicit	Implicit (pull)	Implicit (push)
Rich dependency graphs	Yes	Partial	Yes
Conda integration	Yes	Yes	Yes
Singularity/docker	Coming soon	Yes	Yes
Arbitrary code	Python	Python	Any interpreted
Cloud Execution	No	Kubernates	Amazon Batch
Cloud storage	Google/S3	Many	Many
Functions for common analysis	Yes	No	No

Demonstration

It should take less time, effort and thought to it the right way than to do it the wrong way

Gene profiles

Ruffus dependency types

Originate	None to one
Transform	One to One
Split	One to many
Merge	Many to one
Collate	Many to fewer
Subdivide	Many to more
Follows	Dependency without common files
Files	Arbitrary relationship
Permutations Product Combinations Combinations_with_replacement	Combinatorics

Pipelines can get quite complex...

pipeline_mapping

Really very complicated!

Summary

- Automated farming and monitoring of pipelines of jobs to the cluster
- Create fully logged and reproducible workflows
- Generalizable and scalable
- Should be easer than writing a SGE submission script and faster than running in an interactive session
- Install with conda install -c bioconda -c conda-forge cgatcore

Acknowledgements

Sudbery Lab for Computational Genomics @ TUOS

Dr. Cristina Alexandru-Crivac Jaime Alvarez-Benayas Justin Coyne Magdelena Dabrowska Sumeet Deshmurkh Jacob Parker Ivaylo Yonchev

MRC Computational Genomics Analysis and Training/Tools

Dr. Adam Cribs Sebastian Luna-Valero

Dr. Charlotte George Dr. Antonio Berlanga-Taylor Dr. Stephen Sansom Dr. Tom Smith Dr. Nicholas Ilott Dr. Jethro Johnson Jakub Scaber Dr. Katherine Brown Dr. David Sims Dr. Andreas Heger

Dr. Leo Goodstat (Ruffus)

https://cgaticore.readthedocs.io

Cribbs AP, et al. F1000Research 2019, 8:377

https://snakemake.readthedocs.io Köster, J and Rahmann, S. Bioinformatics 2012, 28:2520

https://nextflow.io

P. Di Tommaso, et al. Nature Biotechnology 2017 35, 316