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What the Scheduler does

A bin-packing problem

◮ Plans how to map jobs into nodes as efficiently as possible

◮ No job should wait "too long"

◮ Everyone should get a "fair share"

◮ Small jobs fill gaps around big ones
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What the Scheduler does

A bin-packing problem

◮ Gaps appear as jobs finish early or are cancelled

◮ Scheduler backfills gaps as best it can

◮ Smaller jobs have more chances to backfill

◮ Ask for only what you actually need

Requested Runtime

C
P
U

S
lo

ts



The real world picture - ShARC

Mining the scheduler data

◮ Who is using ShARC?

◮ How are they using it?

◮ How efficiently are they using it?



The real world picture - ShARC

Mining the scheduler data

◮ Who is using ShARC?

◮ How are they using it?

◮ How efficiently are they using it?

The dataset

◮ Jobs started between 1/7/2017 – 30/6/2018

◮ Only public node data

◮ Failed jobs removed

◮ Sysadmin test jobs removed



User Breakdown
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ShARC usage breakdown per user

◮ 539 unique users

◮ Heaviest 3 users consumed over 50% of available cpu time



Job breakdown
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ShARC usage breakdown by job type
MPI
SMP
Single Thread

◮ Most time is spent running MPI jobs

◮ ∼ 75% MPI vs. ∼ 25% single node/thread



Jobs breakdown
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ShARC job volume by type

Avg. time (min) Count
Single 9.0 5275150

SMP 84.1 32936
MPI 318.9 5878

◮ Huge volume of very short jobs

◮ Heaviest users submitting > 106 short jobs each!



Jobs breakdown
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ShARC usage breakdown by job type
MPI
SMP
Single Thread

◮ ∼ 50% of ShARC jobs shorter than 1 minute

◮ 50% of scheduler effort spent on only 0.4% of cpu time!



Runtime Requests and Usage
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Used fraction of requested runtime
Runlimit specified
Default runlimit

◮ Most over-request walltime by at least an order of magnitude

◮ → Lots of missed opportunities to backfill gaps!



Memory Requests and Usage
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Used Fraction of Requested Memory
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◮ Majority of users explicitly request memory

◮ Better usage, but still lots of over-requesting



Getting Feedback from the Scheduler

Accounting Information

◮ ShARC/Iceberg

$ qacct -j $jobid

◮ Bessemer

$ sacct -j $jobid

◮ Records basic performance information about job

• Requested resources (time, memory etc.)
• Actual runtime
• Actual memory usage
• Useful CPU time



Accounting Information

qacct -j 1150879

qname all.q

hostname sharc -node147.shef.ac.uk

owner ac1mpt

job_number 1150879

submission_time 2018 -04 -16 10:00:43

start_time 2018 -04 -16 10:00:54

end_time 2018 -04 -19 10:34:48

exit_status 0

ru_wallclock 261234

granted_pe mpi

slots 220

cpu 57314572.128644

category -u ac1mpt -l h_rt =345600 , h_vmem =2G

-pe mpi 220 -P SHEFFIELD

maxvmem 150.63G



Resource Rules of Thumb

Runtime

◮ Check ru_wallclock — actual run time

◮ Request 1.5–2× ru_wallclock
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Resource Rules of Thumb

Runtime

◮ Check ru_wallclock — actual run time

◮ Request 1.5–2× ru_wallclock

Memory

◮ Check maxvmem — peak job memory usage

◮ Request 1.5–2× maxvmem

◮ Remember requests are per core

Efficiency

◮ Check cpu — actual cpu usage

◮ Ensure cpu ≃ ru_wallclock × slots



Common HPC Problems

Two common HPC problems

◮ Why is my job still queuing?

◮ How do I install <package>?



Automating Software Installation

Package Managers

◮ Automate installation/removal of software

◮ Manage installation of required dependencies

◮ Curate package repositories

◮ Document and reproduce environments

Focus on just two:



Conda

Pre-built packages for Python, R, etc.

◮ Originally for Anaconda Python distribution

◮ Microsoft provided R packages

◮ Low level numerical support libraries

◮ Intel Python with MKL optimised Numpy/Scipy

◮ Designed for users to install what they need



Installing Conda

Personal machine — Windows, Mac, Linux

◮ Two versions:

◮ Anaconda — Full distribution with hundreds of packages

◮ Miniconda — Just Conda and Python

◮ Download from anaconda.com and run installer



Installing Conda

Personal machine — Windows, Mac, Linux

◮ Two versions:

◮ Anaconda — Full distribution with hundreds of packages

◮ Miniconda — Just Conda and Python

◮ Download from anaconda.com and run installer

ShARC, Bessemer, Iceberg

◮ Already installed:

$ module load conda



Installing and Managing Packages

Conda Environments

◮ Collections of packages and their dependencies

◮ Isolate individual projects

◮ Test/use multiple versions of a package

◮ Easily capture and reproduce environment elsewhere



Installing and Managing Packages

Conda Environments

◮ Collections of packages and their dependencies

◮ Isolate individual projects

◮ Test/use multiple versions of a package

◮ Easily capture and reproduce environment elsewhere

Creating Environments

$ conda create --name myenv numpy pystan

$ source activate myenv
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Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7
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Installing and Managing Packages

Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7

◮ Package versions:

$ conda create --name myenv numpy pystan =2.17.1

◮ Other channels, e.g Intel Python

$ conda create --channel intel --name myenv numpy

◮ Non Python environments e.g R:

$ conda create --channel r --name myRenv r rstudio



Using Environments

Activating and deactivating

◮ “Activate” an environment to use it:

$ conda activate myenv
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Using Environments

Activating and deactivating

◮ “Activate” an environment to use it:

$ conda activate myenv

◮ Installed Packages are now available to use:

$ python

Python 3.6.8 (default , Mar 10 2019, 17:04:16)

>>> module load pystan

>>> module load numpy

>>> # etc...

◮ “Deactivate” the environment to exit:

$ conda deactivate



Using Environments

Installing extra packages

◮ Can add extra packages to the environment

$ conda activate myenv

$ conda install scipy scikit -learn #etc ...

◮ And remove unneeded ones

$ conda remove scikit -learn #etc...



Using Environments

Installing extra packages

◮ Can add extra packages to the environment

$ conda activate myenv

$ conda install scipy scikit -learn #etc ...

◮ And remove unneeded ones

$ conda remove scikit -learn #etc...

Updating packages

◮ Update all packages to the latest version:

$ conda activate myenv

$ conda update --all



Exporting Environments

Preserving Environments

◮ Export complete list of packages with versions to a file:

$ conda env export --name myenv > myenv.txt



Exporting Environments

Preserving Environments

◮ Export complete list of packages with versions to a file:

$ conda env export --name myenv > myenv.txt

Recreating Environments

◮ Now take that package list to another machine:

$ conda create --name myenv_clone -f myenv.txt

◮ myenv_clone is now an exact copy of myenv

• Collaboration with other users
• Porting to new machines
• Publishing for reproducibility

◮ Plain text file listing packages — can also be created/edited by

hand



Conda — Summary

Python and R Package Management

◮ Designed for portability and reproducibility

◮ Rapidly install Python, R etc. packages

◮ Full control of package versioning

◮ Maintain multiple custom package environments

◮ Export, share and duplicate environemnts



Spack

Build scientific packages from source

◮ Primarily designed for HPC package management

◮ Build optimised packages for specific system

◮ “Recipes” to install over 3000 packages

◮ Interoperates with already installed packages

◮ For sysadmins and end-users



Installing Spack

Requirements

◮ Python >= 2.6

◮ A working compiler (gcc, intel, pgi, etc.)



Installing Spack

Requirements

◮ Python >= 2.6

◮ A working compiler (gcc, intel, pgi, etc.)

Installation

$ cd $HOME

$ git clone https :// github.com/spack/spack.git

$ export SPACK_ROOT =" $HOME/spack"

$ source $SPACK_ROOT/share/spack/setup -env.sh

◮ Install as user in homedir

◮ Use .bashrc to automatically set up



Configuring Spack

Compiler autodetection

$ spack compilers

==> Available compilers

-- gcc sles12 -x86_64 ------------------------

gcc@4.8



Configuring Spack

Compiler autodetection

$ spack compilers

==> Available compilers

-- gcc sles12 -x86_64 ------------------------

gcc@4.8

Additional compilers

$ module load gcc /8.1.0

$ spack compiler find

==> Added 1 new compiler:

gcc@8 .1.0



Configuring Spack

System packages

◮ Often want to use some system packages, e.g:

• Vendor optimised MPI
• System supplied BLAS/LAPACK
• Avoid compiling again

◮ Specify in packages.yaml

# /home/phil/.spack/linux/packages.yaml

packages:

netlib -lapack:

modules: lapack /3.8.0

buildable: False



Installing Packages

Search available packages

$ spack list mpi

==> 21 packages.

intel -mpi mpibash mpiblast mpich openmpi ...



Installing Packages

Search available packages

$ spack list mpi

==> 21 packages.

intel -mpi mpibash mpiblast mpich openmpi ...

Install a package

◮ Install “preferred” version

$ spack install openmpi

◮ Specify a version

$ spack install openmpi@2 .1.0



Spack — Summary

HPC Package Management

◮ A heavy duty package manager

◮ Designed for flexibility and control

◮ Integration with system modules and packages

◮ Full control of package versioning

◮ Build optimised packages from source
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POP CoE

• A Centre of Excellence

• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

• Providing FREE Services

• Precise understanding of application and system behaviour

• Suggestion/support on how to refactor code in the most productive way

• Horizontal

• Transversal across application areas, platforms, scales

• For (EU) academic AND industrial codes and users !
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• Who?

• BSC, ES (coordinator)

• HLRS, DE

• IT4I, CZ

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND 

proven commitment in application to real academic and industrial use cases 3

Partners



Why?

• Complexity of machines and codes 

 Frequent lack of quantified understanding of actual behaviour

 Not clear most productive direction of code refactoring

• Important to maximize efficiency (performance, power) of 
compute intensive applications and productivity of the 
development efforts

What?

• Parallel programs, mainly MPI/OpenMP
• Although also CUDA, OpenCL, OpenACC, Python, …

4
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• Parallel Application Performance Assessment

• Primary service

• Identifies performance issues of customer code (at customer site)

• If needed, identifies the root causes of the issues found and
qualifies and quantifies approaches to address them (recommendations)

• Combines former Performance Audit (?) and Plan (!)

• Medium effort (1-3 months)

• Proof-of-Concept (✓)

• Follow-up service

• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps experiments to show
effect of proposed optimisations

• Larger effort (3-6 months)

Note: Effort shared between our experts and customer!

FREE Services provided by the CoE



The Process …
When?

December 2018 – November 2021

How?

• Apply

• Fill in small questionnaire
describing application and needs
https://pop-coe.eu/request-service-form

• Questions? Ask pop@bsc.es

• Selection/assignment process

• Install tools @ your production machine (local, PRACE, …)
• Interactively: Gather data → Analysis → Report
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