
HPC the Easy Way
Tools and techniques for making the most of your resources

RSE Sheffield Seminar Series

University of Sheffield

30 July 2019

Phil Tooley

HPC Application Analyst

Experts in numerical software and

High Performance Computing

Outline

Common HPC Problems

Using the HPC more efficiently

The real world — ShARC

HPC Package Managers

Conda

Spack

The POP-COE

Common HPC Problems

Two common HPC problems

◮ Why is my job still queuing?

◮ How do I install <package>?

Common HPC Problems

Two common HPC problems

◮ Why is my job still queuing?

◮ How do I install <package>?

What the Scheduler does

A bin-packing problem

◮ Plans how to map jobs into nodes as efficiently as possible

◮ No job should wait "too long"

◮ Everyone should get a "fair share"

◮ Small jobs fill gaps around big ones

Requested Runtime

C
P
U

S
lo

ts

What the Scheduler does

A bin-packing problem

◮ Gaps appear as jobs finish early or are cancelled

◮ Scheduler backfills gaps as best it can

◮ Smaller jobs have more chances to backfill

◮ Ask for only what you actually need

Requested Runtime

C
P
U

S
lo

ts

The real world picture - ShARC

Mining the scheduler data

◮ Who is using ShARC?

◮ How are they using it?

◮ How efficiently are they using it?

The real world picture - ShARC

Mining the scheduler data

◮ Who is using ShARC?

◮ How are they using it?

◮ How efficiently are they using it?

The dataset

◮ Jobs started between 1/7/2017 – 30/6/2018

◮ Only public node data

◮ Failed jobs removed

◮ Sysadmin test jobs removed

User Breakdown

0 50 100 150 200 250 300 350 400
User #

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Cl

us
te

r t
im

e
(%

)

ShARC usage breakdown per user

◮ 539 unique users

◮ Heaviest 3 users consumed over 50% of available cpu time

Job breakdown

0 5000 10000 15000 20000 25000 30000 35000
Job size (core hours)

0

5

10

15

20

25

30
Cl

us
te

r t
im

e
(%

)

ShARC usage breakdown by job type
MPI
SMP
Single Thread

◮ Most time is spent running MPI jobs

◮ ∼ 75% MPI vs. ∼ 25% single node/thread

Jobs breakdown

Single Thread SMP MPI
10 1

100

101

102
Jo

b
vo

lu
m

e(
%

)

ShARC job volume by type

Avg. time (min) Count
Single 9.0 5275150

SMP 84.1 32936
MPI 318.9 5878

◮ Huge volume of very short jobs

◮ Heaviest users submitting > 106 short jobs each!

Jobs breakdown

0 2 4 6 8 10
Job size (core minutes)

0

5

10

15

20

25
Fr

ac
tio

n
of

 jo
bs

 (%
)

ShARC usage breakdown by job type
MPI
SMP
Single Thread

◮ ∼ 50% of ShARC jobs shorter than 1 minute

◮ 50% of scheduler effort spent on only 0.4% of cpu time!

Runtime Requests and Usage

0.00 0.25 0.50 0.75 1.00
Used runtime fraction

0

10

20

30

40

50

60
Fr

ac
tio

n
of

 T
ot

al
 Jo

bs
 (%

)

Used fraction of requested runtime
Runlimit specified
Default runlimit

◮ Most over-request walltime by at least an order of magnitude

◮ → Lots of missed opportunities to backfill gaps!

Memory Requests and Usage

0.00 0.25 0.50 0.75 1.00
Used vmem fraction

0

2

4

6

8

10

12
Fr

ac
tio

n
of

 T
ot

al
 Jo

bs
 (%

)

Used Fraction of Requested Memory
Memlimit specified
Default memlimit

◮ Majority of users explicitly request memory

◮ Better usage, but still lots of over-requesting

Getting Feedback from the Scheduler

Accounting Information

◮ ShARC/Iceberg

$ qacct -j $jobid

◮ Bessemer

$ sacct -j $jobid

◮ Records basic performance information about job

• Requested resources (time, memory etc.)
• Actual runtime
• Actual memory usage
• Useful CPU time

Accounting Information

qacct -j 1150879

qname all.q

hostname sharc -node147.shef.ac.uk

owner ac1mpt

job_number 1150879

submission_time 2018 -04 -16 10:00:43

start_time 2018 -04 -16 10:00:54

end_time 2018 -04 -19 10:34:48

exit_status 0

ru_wallclock 261234

granted_pe mpi

slots 220

cpu 57314572.128644

category -u ac1mpt -l h_rt =345600 , h_vmem =2G

-pe mpi 220 -P SHEFFIELD

maxvmem 150.63G

Resource Rules of Thumb

Runtime

◮ Check ru_wallclock — actual run time

◮ Request 1.5–2× ru_wallclock

Resource Rules of Thumb

Runtime

◮ Check ru_wallclock — actual run time

◮ Request 1.5–2× ru_wallclock

Memory

◮ Check maxvmem — peak job memory usage

◮ Request 1.5–2× maxvmem

◮ Remember requests are per core

Resource Rules of Thumb

Runtime

◮ Check ru_wallclock — actual run time

◮ Request 1.5–2× ru_wallclock

Memory

◮ Check maxvmem — peak job memory usage

◮ Request 1.5–2× maxvmem

◮ Remember requests are per core

Efficiency

◮ Check cpu — actual cpu usage

◮ Ensure cpu ≃ ru_wallclock × slots

Common HPC Problems

Two common HPC problems

◮ Why is my job still queuing?

◮ How do I install <package>?

Automating Software Installation

Package Managers

◮ Automate installation/removal of software

◮ Manage installation of required dependencies

◮ Curate package repositories

◮ Document and reproduce environments

Focus on just two:

Conda

Pre-built packages for Python, R, etc.

◮ Originally for Anaconda Python distribution

◮ Microsoft provided R packages

◮ Low level numerical support libraries

◮ Intel Python with MKL optimised Numpy/Scipy

◮ Designed for users to install what they need

Installing Conda

Personal machine — Windows, Mac, Linux

◮ Two versions:

◮ Anaconda — Full distribution with hundreds of packages

◮ Miniconda — Just Conda and Python

◮ Download from anaconda.com and run installer

Installing Conda

Personal machine — Windows, Mac, Linux

◮ Two versions:

◮ Anaconda — Full distribution with hundreds of packages

◮ Miniconda — Just Conda and Python

◮ Download from anaconda.com and run installer

ShARC, Bessemer, Iceberg

◮ Already installed:

$ module load conda

Installing and Managing Packages

Conda Environments

◮ Collections of packages and their dependencies

◮ Isolate individual projects

◮ Test/use multiple versions of a package

◮ Easily capture and reproduce environment elsewhere

Installing and Managing Packages

Conda Environments

◮ Collections of packages and their dependencies

◮ Isolate individual projects

◮ Test/use multiple versions of a package

◮ Easily capture and reproduce environment elsewhere

Creating Environments

$ conda create --name myenv numpy pystan

$ source activate myenv

Installing and Managing Packages

Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7

Installing and Managing Packages

Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7

◮ Package versions:

$ conda create --name myenv numpy pystan =2.17.1

Installing and Managing Packages

Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7

◮ Package versions:

$ conda create --name myenv numpy pystan =2.17.1

◮ Other channels, e.g Intel Python

$ conda create --channel intel --name myenv numpy

Installing and Managing Packages

Lots of customization options

◮ Choose Python version:

$ conda create --name myenv numpy pystan python =3.7

◮ Package versions:

$ conda create --name myenv numpy pystan =2.17.1

◮ Other channels, e.g Intel Python

$ conda create --channel intel --name myenv numpy

◮ Non Python environments e.g R:

$ conda create --channel r --name myRenv r rstudio

Using Environments

Activating and deactivating

◮ “Activate” an environment to use it:

$ conda activate myenv

Using Environments

Activating and deactivating

◮ “Activate” an environment to use it:

$ conda activate myenv

◮ Installed Packages are now available to use:

$ python

Python 3.6.8 (default , Mar 10 2019, 17:04:16)

>>> module load pystan

>>> module load numpy

>>> # etc...

Using Environments

Activating and deactivating

◮ “Activate” an environment to use it:

$ conda activate myenv

◮ Installed Packages are now available to use:

$ python

Python 3.6.8 (default , Mar 10 2019, 17:04:16)

>>> module load pystan

>>> module load numpy

>>> # etc...

◮ “Deactivate” the environment to exit:

$ conda deactivate

Using Environments

Installing extra packages

◮ Can add extra packages to the environment

$ conda activate myenv

$ conda install scipy scikit -learn #etc ...

◮ And remove unneeded ones

$ conda remove scikit -learn #etc...

Using Environments

Installing extra packages

◮ Can add extra packages to the environment

$ conda activate myenv

$ conda install scipy scikit -learn #etc ...

◮ And remove unneeded ones

$ conda remove scikit -learn #etc...

Updating packages

◮ Update all packages to the latest version:

$ conda activate myenv

$ conda update --all

Exporting Environments

Preserving Environments

◮ Export complete list of packages with versions to a file:

$ conda env export --name myenv > myenv.txt

Exporting Environments

Preserving Environments

◮ Export complete list of packages with versions to a file:

$ conda env export --name myenv > myenv.txt

Recreating Environments

◮ Now take that package list to another machine:

$ conda create --name myenv_clone -f myenv.txt

◮ myenv_clone is now an exact copy of myenv

• Collaboration with other users
• Porting to new machines
• Publishing for reproducibility

◮ Plain text file listing packages — can also be created/edited by

hand

Conda — Summary

Python and R Package Management

◮ Designed for portability and reproducibility

◮ Rapidly install Python, R etc. packages

◮ Full control of package versioning

◮ Maintain multiple custom package environments

◮ Export, share and duplicate environemnts

Spack

Build scientific packages from source

◮ Primarily designed for HPC package management

◮ Build optimised packages for specific system

◮ “Recipes” to install over 3000 packages

◮ Interoperates with already installed packages

◮ For sysadmins and end-users

Installing Spack

Requirements

◮ Python >= 2.6

◮ A working compiler (gcc, intel, pgi, etc.)

Installing Spack

Requirements

◮ Python >= 2.6

◮ A working compiler (gcc, intel, pgi, etc.)

Installation

$ cd $HOME

$ git clone https :// github.com/spack/spack.git

$ export SPACK_ROOT =" $HOME/spack"

$ source $SPACK_ROOT/share/spack/setup -env.sh

◮ Install as user in homedir

◮ Use .bashrc to automatically set up

Configuring Spack

Compiler autodetection

$ spack compilers

==> Available compilers

-- gcc sles12 -x86_64 ------------------------

gcc@4.8

Configuring Spack

Compiler autodetection

$ spack compilers

==> Available compilers

-- gcc sles12 -x86_64 ------------------------

gcc@4.8

Additional compilers

$ module load gcc /8.1.0

$ spack compiler find

==> Added 1 new compiler:

gcc@8 .1.0

Configuring Spack

System packages

◮ Often want to use some system packages, e.g:

• Vendor optimised MPI
• System supplied BLAS/LAPACK
• Avoid compiling again

◮ Specify in packages.yaml

/home/phil/.spack/linux/packages.yaml

packages:

netlib -lapack:

modules: lapack /3.8.0

buildable: False

Installing Packages

Search available packages

$ spack list mpi

==> 21 packages.

intel -mpi mpibash mpiblast mpich openmpi ...

Installing Packages

Search available packages

$ spack list mpi

==> 21 packages.

intel -mpi mpibash mpiblast mpich openmpi ...

Install a package

◮ Install “preferred” version

$ spack install openmpi

◮ Specify a version

$ spack install openmpi@2 .1.0

Spack — Summary

HPC Package Management

◮ A heavy duty package manager

◮ Designed for flexibility and control

◮ Integration with system modules and packages

◮ Full control of package versioning

◮ Build optimised packages from source

EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

Parallel
Performance Optimization and

Productivity

POP CoE

• A Centre of Excellence

• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

• Providing FREE Services

• Precise understanding of application and system behaviour

• Suggestion/support on how to refactor code in the most productive way

• Horizontal

• Transversal across application areas, platforms, scales

• For (EU) academic AND industrial codes and users !

2

• Who?

• BSC, ES (coordinator)

• HLRS, DE

• IT4I, CZ

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND

proven commitment in application to real academic and industrial use cases 3

Partners

Why?

• Complexity of machines and codes

 Frequent lack of quantified understanding of actual behaviour

 Not clear most productive direction of code refactoring

• Important to maximize efficiency (performance, power) of
compute intensive applications and productivity of the
development efforts

What?

• Parallel programs, mainly MPI/OpenMP
• Although also CUDA, OpenCL, OpenACC, Python, …

4

Motivation

• Parallel Application Performance Assessment

• Primary service

• Identifies performance issues of customer code (at customer site)

• If needed, identifies the root causes of the issues found and
qualifies and quantifies approaches to address them (recommendations)

• Combines former Performance Audit (?) and Plan (!)

• Medium effort (1-3 months)

• Proof-of-Concept (✓)

• Follow-up service

• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps experiments to show
effect of proposed optimisations

• Larger effort (3-6 months)

Note: Effort shared between our experts and customer!

FREE Services provided by the CoE

The Process …
When?

December 2018 – November 2021

How?

• Apply

• Fill in small questionnaire
describing application and needs
https://pop-coe.eu/request-service-form

• Questions? Ask pop@bsc.es

• Selection/assignment process

• Install tools @ your production machine (local, PRACE, …)
• Interactively: Gather data → Analysis → Report

5

https://pop-coe.eu/request-service-form
mailto:pop@bsc.es

	Common HPC Problems
	Using the HPC more efficiently
	The real world — ShARC

	HPC Package Managers
	Conda
	Spack

	The POP-COE

